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Abstract

A differential isoconversional non-linear procedure for evaluating activation energy from non-iso-
thermal data is suggested. This procedure was applied to model reactions (simulations) and to the de-
hydration of CaC2O4·H2O. The results were compared with those obtained by other isoconversional
methods.
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Introduction

The kinetics of heterogeneous condensed phase reactions is usually described by the
Eq. (1):
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where: α is the degree of conversion, t is the time, T is the temperature, A is the
pre-exponential factor, E is the activation energy, R is the gas constant and f (α) is the
differential conversion factor (reaction model).

From Eq. (1) it follows that the kinetic triplet (A, E, f (α)) gives the kinetic de-
scription of a certain reaction.

If the experiment is performed in non-isothermal conditions with a constant
heating rate (β=dT/dt=const.), Eq. (1) turns in:
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Starting with this equation, various procedures for evaluating the kinetic triplet
from non-isothermal data were developed [1]. A classification of these methods was
proposed in [2]. In some recent papers [3–5], it was shown that the application of dif-
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ferent methods to the same non-isothermal data leads to different values of the kinetic
parameters. On the other hand, it was shown [6–17] that several various kinetic mod-
els may relatively correctly describe a thermogravimetric curve. In many cases large
differences can be noted among the activation parameters derived from each kinetic
model. Consequently, kinetic analysis of the non-isothermal data has been subject of
numerous criticisms.

Recently, the progresses made in the area of kinetic analysis of solid state reac-
tions have been mirrored in the results of the ICTAC Kinetics Project [18–22]. The
participants at this project applied a variety of computational methods to evaluate the
kinetic parameters that characterize some heterogeneous reactions. It was concluded
that the isoconversional and multiheating rate methods were particularly successful
in correctly describing the multi-step kinetics. Among the isoconversional methods
(Friedman (FR) [23], Flynn–Wall–Ozawa (FWO) [24, 25], Kissinger–Akahira–Su-
nose (KAS) [26], Li–Tang (LT) [27, 28], integral non-linear procedures given by
Vyazovkin [29–31]), we will focus below on the integral non-linear procedure
(NL-INT) suggested by Vyazovkin and Dollimore [29]. According to this non-linear
procedure, for a set of n experiments carried out at different heating rates, the activa-
tion energy can be determined at any particular value of α by finding the value of Eα
for which the function:
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is minimum.
In this equation:
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The values of I(Eα, Tα) may be found by numerical integration as well as by
means of an accurate approximation (e.g. Senum–Yang approximation [32]). By
changing T variable with t, NL-INT procedure allows one to account for temperature
deviations in a sample caused by overheating or cooling [30].

In order to derive the above minimum condition, it was assumed that the activation
parameters (E and A) do not depend on α, which is equivalent with assumption of the ac-
tivation parameters independence on the integration limits. On the other hand, it was
pointed out [3–5] that when E depends on α, some important differences between E val-
ues determined by differential isoconversional method suggested by Friedman (EFR) and
those determined by FWO, KAS and LT integral isoconversional methods exist. The rea-
son for these differences is the use of integral methods that assume constant values of E
and A in cases when the activation parameters depend on α. It is expected that the
NL-INT procedure [29], applied in the cases when the activation energy depends on α,
leads to E values different from EFR values. Indeed, in a very recent paper [33] Vyazovkin
put in evidence such differences. In order to eliminate them, Vyazovkin [33] suggested a
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modified integral isoconversional method (MNL-INT) in which the constancy of Eα is
assumed for only a small segment ∆α and the integral (4) with the limits Tα–∆α and Tα
(tα–∆α and tα, in [33]) is evaluated numerically from the non-isothermal data by using trap-
ezoidal rule. This procedure leads to Eα values practically equal with those obtained by
Friedman method.

Like other procedures to evaluate E in which the approximation of the tempera-
ture integral over a large range of temperature is avoided by integrating the rate equa-
tion (Eq. (2)) over a small ranges of variables [34–38], MNL-INT procedure in-
volves: a) the suitable choice of ∆α that leads to correct values of E; b) the precise
evaluation of Tα–∆α and Tα (or tα–∆α and tα); c) the attribution of α value corresponding
to calculated E, when the activation energy depends on α. Obviously, for ∆α → 0, all
these methods [34–38] lead to E values practically equal with those obtained by
Friedman method.

In this paper, a differential non-linear isoconversional procedure (NL-DIF) to
evaluate the activation energy from non-isothermal data will be suggested. It will be
pointed out that the minimum condition used in our procedure also results from the
minimum condition used in MNL-INT procedure [33] when ∆α → 0. The suggested
procedure will be applied for some non-isothermal data and the obtained values of the
activation energy will be compared with those evaluated by means of NL-INT and
MNL-INT methods as well as by the linear isoconversional methods (FR, FWO,
KAS and LT).

Differential isoconversional non-linear method (NL-DIF method)

Like in all isoconversional methods [23–31, 33] we assume that the reaction model
(f (α)) is independent of the heating rate.

The derivation of the minimum condition which grounds NL-DIF method is
similar to that given by Vyazovkin and Dollimore [29] for the corresponding mini-
mum condition which grounds NL-INT method.

Equation (2) can be written for a given conversion and a set of experiments per-
formed under different heating rates βi (i=1,…, n) as:
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It follows from the strict fulfillment of (5) that:
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Since Tα, i and
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(I=1,…, n) are measured with some experimental errors,

Eq. (6) can only be satisfied as an approximate equality. Consequently, Eq. (6) can be
represented as the following condition of minimum:
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or the equivalent form:
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By substituting experimental values of Tα, β and dα/dT into Eq. (8) and varying
Eα to reach the minimum, gives the value of the activation energy at a given degree of
conversion.

Equations (7) and (8) can be adapted to an arbitrary variation of temperature as
well as to isothermal conditions by replacing β(dα/dT) with dα/dt.

We will point out below that the minimum condition (8) also results from the
minimum condition used in MNL-INT method [33].

For small segment ∆α, the temperature integral (4) can be approximated using
the average theorem:
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where Tα–∆a<Tξ<Tα and ∆T=Tα–Tα–∆α.

Consequently:
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∆α having the same value for all considered heating rates, it results:
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For ∆α → 0: Tα, ξi → Tα, i and Eq. (11) turns into Eq. (5) that grounds the NL-DIF
method.

NL-DIF procedure corresponds to the differential linear method given by Fried-
man (FR) and to MNL-INT procedure. Consequently, it is expected that, when the ac-
tivation parameters change with α, E evaluated by NL-DIF method to be equal with
those by FR method and MNL-INT procedure, but different from those evaluated by
integral isoconversional methods (FWO, KAS, LT, NL-INT).

Simulations

Firstly, NL-DIF procedure will be checked for two sets of non-isothermal simulated
data corresponding to a single reaction and two consecutive reactions. Obviously, un-
like the experimental data, these data are not affected by noises and, therefore, are
suitable for the verification of the suggested procedure.

Simulated thermogravimetric curves for a single reaction

The data were simulated for f (α)=1–α; E=58.5 kJ mol–1; A=900 s–1 and the following
heating rates: 0.5, 0.9, 5, 10 and 15 K min–1.

The values of the activation energy obtained by means of all isoconversional
methods (FR, FWO, KAS, LT, NL-INT, MNL-INT and NL-INT) are practically
equal to E value used for simulation and, obviously do not depend on the conversion
degree. The straight lines corresponding to the linear methods (FR, FWO, KAS and
LT) exhibit a correlation coefficient r ≥0.99940. We suggest that for non-linear pro-
cedures, e S n n n n= − − − −1 1 1( ) / ( ) is a measure of the accuracy in Eα evaluation (S is the
double sum involved in the corresponding non-linear procedure). For all considered
non-linear procedures, it was obtained e≥0.99921.

Simulated thermogravimetric curves for two consecutive reactions

A strong variation of the apparent activation energy with α may be observed for a
process that involves two consecutive decomposition steps:

A(s) k1 → B(s) +ν1G1(g) (I)

B(s) k2 → C(s) +ν2G2(g) (II)

where A, B and C are solid compounds and G1 and G2 are gaseous products.
The rate constants, k1 and k2, are expressed by Arrhenius equation:
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where i=1 for reaction I and i=2 for reaction II.
Both successive reactions are characterized by a value of the reaction order that

equals one. The following values of the activation parameters are going to be consid-
ered: E1=58.5 kJ mol–1; A1=9·102 s–1; E2=125.4 kJ mol–1; A1=5·108 s–1.

The system of differential kinetic equations is then [39]:
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where α1 and α2 are respectively the values of the degree of conversion for reactions I
and II (αi is the ratio between the mass of the gaseous product at a given moment and
the maximum mass of this product which can be evolved in reaction).

The numeric method for solving this equations system is given in [40].
The particular case ν1M1=ν2M2, where Mi is the molecular mass of the gaseous prod-

uct Gi, and for which the total degree of conversion, α, is given by: α (α α= +1 2 2)/ will be

considered.
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Fig. 1 Dependence of the apparent activation energy evaluated by means of
isoconversional methods on the conversion degree, for simulated two consecu-
tive reactions. Eint=E evaluated by FWO, KAS and NL-INT methods; EFR=E
evaluated by Friedman method; ENL-DIF=E evaluated by NL-DIF method;
ELT(α0=0.05)=E evaluated by LT method for the inferior limit of integration
α0=0.05; EMNL-INT=E evaluated by MNL-INT procedure



The thermogravimetric curves were calculated for 25 heating rates with values
in the range 0.15–20 K min–1. Through numeric differentiation of thermogravimetric
curves, the curves dα/dT vs. T were plotted. In such way, it was shown that for
0.15 K min–1≤β≤ 2 K min–1 the dα/dT vs. T curves exhibit two distinct maxima corre-
sponding to the two reactions and for 2.25 K min–1≤β≤20 K min–1, each dα/dT vs. T
curve exhibit a single maximum. For this last range of β, reactions I and II are not
separated in curves. Consequently, for this range of heating rates, the values of the
apparent activation energy were determined by means of the isoconversional meth-
ods. The obtained dependencies are displayed in Fig. 1, from which one can see:

• the used differential methods (FR and NL-DIF) as well as MNL-INT proce-
dure lead to practically the same values of E which are considerable higher
than those obtained by means of the integral methods (FWO, KAS, NL-INT);
the absolute maximum relative deviation of Eint with respect to ENL-DIF≡EFR≈
EMNL-INT is≈21%);

• except ELT, all the considered integral methods (FWO, KAS, NL-INT) give
practically the equal values of the apparent activation energy (the differences
between ELT and Eint can be explained by the dependence of ELT on α0, when E
changes with α [41]).

All straight lines corresponding to use linear isoconversional procedures have
r ≥0.9964. The values of e S n n n n= − − − −1 1 1( ) / ( ) for used non-linear methods are
higher than 0.9971.
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Fig. 2 Dependence of the apparent activation energy evaluated by means of isocon-
versional methods on the conversion degree, for dehydration of CaC2O4·H2O.
Eint=E evaluated by FWO (▼), KAS (▼) and NL-INT (+ superposed on ◆)
methods; Edif=E evaluated by FR (■), MNL-INT (▲) and NL-DIF (superposed
on ■) methods



Experimental example: dehydration of CaC2O4·H2O

In this section, we test the suggested isoconversional procedure (NL-DIF) against ex-
perimental data corresponding to the dehydration of CaC2O4·H2O, to compare E val-
ues obtained by our procedure with those obtained by other isoconversional methods
(FR, FWO, KAS, MNL-INT, NL-INT).

The thermogravimetric curves corresponding to the dehydration of CaC2O4·H2O
in static air atmosphere at the heating rates of 0.987, 2.353, 4.988 and 9.573 K min–1

were recorded with a DuPont 1090 thermal analyzer. The obtained results were re-
ported previously by Urbanovici and Segal [37].

The dependence of the activation energy, obtained by means of isoconversional
methods, on the conversion degree is shown in Fig. 2. For a given value of α, EFR=
EMNL-INT=ENL-DIF<EFWO=EKAS=ENL-INT. In a very recent paper [33], Vyazovkin reported
similar results (EFR=EMNL-INT<ENL-INT). All straight lines corresponding to use linear
isoconversional procedures have r ≥0.992. The values of e S n n n n= − − − −1 1 1( ) / ( ) for
used non-linear methods are higher than 0.991.

Conclusions

A differential isoconversional non-linear procedure (NL-DIF) to evaluate the activa-
tion energy from non-isothermal data has been suggested.

It was pointed out that the minimum condition that ground this procedure results
from minimum condition used in MNL-INT procedure suggested by Vyazovkin, for
∆α → 0.

If the activation energy does not change with the conversion degree, NL-DIF
procedure leads to values of the activation energy, which are in good agreement with
those obtained by means of other differential and integral isoconversional methods.

If the activation energy varies with the conversion degree, NL-DIF procedure
leads to E values identical with those obtained by Friedman and MNL-INT methods,
but which differ significantly from those evaluated by means of integral isoconver-
sional methods.
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